

The Problem

The Solution ??

Will it move?

Will it move?

checkerboard grid

staircase grid

L-grid

The grid can be deformed if:

Observations

- there is an empty row or column
- There is a brace that is the only one both in its row and its column

Some ideas

three braces in a 2×2 square - staircase grid example

Some more ideas

`horizontal' beams in columns `vertical' posts in rows

Does it move?

(from FLOPPY GRIDS, Klatt et.al.)

Graph theory to the rescue

A grid is rigid if and only if its grid graph is connected.

Minimal bracing

Subset of the braces that keep the grid rigid but if any of them is removed than the grid can be deformed.

Spanning tree of the connected grid graph has this property.

For an $m \times n$ grid any minimal bracing has $m+n-1$ braces.

Other approaches

Linear algebra
adjacency matrix A for the grid graph of the $m \times n$ braced grid

$$
R=A+A^{2}+A^{3}+\ldots+A^{(m+n-1)}
$$

The bracing is rigid if and only if R has no 0 entries.

Angle constraints

square (i, j)

$$
a_{i}=b_{j}+90^{\circ}
$$

$$
\begin{aligned}
& a_{1}=90^{\circ} \\
& a_{1}=b_{1}+90^{\circ} \\
& a_{1}=b_{2}+90^{\circ} \\
& a_{2}=b_{1}+90^{\circ}
\end{aligned}
$$

Grid is rigid if $\mathrm{a}_{\mathrm{i}}=90^{\circ} \mathrm{b}_{\mathrm{j}}=0^{\circ}$ is the unique solution.

Further explorations

Fault tolerant bracings - what if a brace fails?

Bracing a polyomino shape

Bracing game

Bracing other shapes

Bracing with cables

$a_{i} \leq b_{j}+90^{\circ}$

$a_{i} \geq b_{j}+90^{\circ}$

Thank you!

References:

Incidence and symmetry in design and architecture, Jenny A. Baglivo and Jack E. Graver, Cambridge University Press, 1983.

Graphs, Digraphs, and the Rigidity of Grids, Brigitte Servatius, UMAP Journal, 16, 37-63, 1995.

Floppy Grids - Discovering the Mathematics of Grid Bracing, a COMAP FAIM Project by G. Klatt, CC Edwards, S. Heubach and V. Howe

